If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+186x-225=0
a = 7; b = 186; c = -225;
Δ = b2-4ac
Δ = 1862-4·7·(-225)
Δ = 40896
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{40896}=\sqrt{576*71}=\sqrt{576}*\sqrt{71}=24\sqrt{71}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(186)-24\sqrt{71}}{2*7}=\frac{-186-24\sqrt{71}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(186)+24\sqrt{71}}{2*7}=\frac{-186+24\sqrt{71}}{14} $
| 5x=11-2(2x+1) | | 11=c+7 | | 5x+45=7x+15 | | 12x-24+3x=1/2+13/2+2 | | 3x+4(2x+2)=-47 | | 12(x-2)+3x=1/2(x+6)=2 | | 7x+11=7x+ | | 4(x+15)=x+3 | | 4c+5=45 | | 3x+28=22 | | -9x(3)=135 | | 16x=2(30-2x)+2(24-2x) | | 6x+27+12+9=90 | | 3(a-7)=26 | | −12x+8+5x=36 | | 4(x+5)=8x+18-4x+2 | | -15-6x=-40-x | | 5x-44=-12 | | 14x+2=3x+46 | | 45+2x+15=4x-20 | | 4(x+1)=(3x+1) | | I-15-5n=3n+41 | | 4+6x=2x-12 | | 8x/5-4=12 | | 16x=2(50-2x)+2(24-2x) | | (x+9)-(3x-12)=-3 | | q+9/10=2/3 | | 3a-1/a=6 | | 1/2(2x-4)+10=4x+41 | | 16j^2–8j+1=0 | | (12x)÷(-4)=-21 | | 3/8x+1/3x=91/3+7/3x |